Extremal and Probabilistic Graph Theory
Lecture 14
April 19th, Tuesday

Recall (Erdsos — Gallai).
t(n—1)

ex(n, {Cis1,Cy2,...}) < 5

Definition 14.1 A walk of length k in a graph G is an alternating sequence (vg, €1, V1, ..., Vg—1, €k, Vk)
where v; € V(G) and e; = {vi—_1,v;} € E(G).

Note. In this definition, a walk is an ordered sequence.
Definition 14.2 A walk is non-backtracking if e; # ejy1,1 <i <k —1.

Definition 14.3 Let A = (aij)nxn be the adjacency matriz of the graph G s.t

1 ifij e E(G),
aij = .
0 otherwise.
Fact. For u,v € V(G) and the adjacency matrix A of G, (A¥)y, is the number of walks from u
to v of length k in G.
Proof. Exercise (Hint: matrix multiplication and induction). 1

Notation 14.4 For x,y € R", (x,y) = Y 1" | ZiV;.

Theorem 14.5 Let A be a symmetric matriz and let x be a unit vector of R™ s.t all entries of
A and x are non-negative, then (AFx,x) > (Ax, x)k.

Proof. Since A is symmetric, there exists a matrix X s.t D = X 'AX = diag(\1, ..., \p,) where );
is the eigenvalue of A and X consists of the eigenvectors X, ..., X;, which form an orthonormal
basis of R". So AX; = \X;. Let x = >0 a;X;, where > a? = 1. Then (Ax,x) =

S Aa2. Since A = XDX 1, we have A¥ = XDFX 1 and (A*x,x) =Y | A¥a?. By Jensen’s
inequality(f(z) = 2" is convex),

(Akx x) = Z)\falz > (Z Aiad)k = (Ax, x)k.

Note. This proof only works when k£ is even as some )\f may be negative when k is odd.
Case 1. x has an zero entry.

Without losing generality, say z1 = 0. Let y € R"~! be obtained from x by deleting x1, and
let B € R@=Dx(=1) he obtained from A by deleting the 1st row and 1st column. By induction
on n, (Bfy,y) > (By,y)*. Note that (Ax,x) = (By,y), and (A*x,x) > (B*y,y) (A exercise
from linear algebra). So

(Akx,x) > (BFy,y) > (By,y)" = (Ax, x)k.

Case 2. All entries of x are positive.



By re-normalization, we may assume that the largest eigenvalue of A is A\ = 1, with a non-
negative unit eigenvector z € R", i.e Az = z. (By Perron — Frobenius Theorem).
If x is an eigenvector of A with A = 1, then it is clear that

(AFx,x) = (x,x) = 1 = (Ax,x)".

So we may assume that x is not such a thing. Then there exist a unit vector y € R"™ which is
orthogonal to z s.t x = az + By, with a? + 32 = 1, where «, 8 > 0(x, z are non-negative).

Claim 1. (Ay,y) < 1.

Proof. Suppose that (Ay,y) = 1. Then (Ax,x) = o?(Az,z) + B?(Ay,y) = o® + 3% = 1. But
(Ax,x) = > | Mia? < max{\i, ..., \,} = 1. This implies A = 1, and x is an eigenvector of A = 1.
This is a contradiction. |

We can select a non-negative unit vector w € R s.t w has a zero entry and w = o'z + 'y,
where 0 < o < a,0 < 8,0/ + 32 = 1. By Case 1, we have (Af¥w, w) > (Aw, w)F.

Let f:[0,1] - R by
(Ary,y) -1
(Ay,y) -1
Then f” <0, which means f is convex on [0,1]. And f(1) = 0.

flt)y=1—tF+ (t—1).

Claim 2. f({Ax,x)) = (A¥x,x) — (Ax,x)¥. Similarly, f((Aw,w)) = (AFw,w) — (Aw, w)F.
Proof. 1t is the same to verify

(Aty,y) -1 (A*xx) —1

(Ay,y) -1 (Ax,;x) -1~

Hint:(Ax,x) = o?(Az,z) + f*(Ay,y) = 1+ p%((Ay,y) — 1). Similarly, (4*x,x) = 1 +
F((Ary,y) - 1). "

Claim 3. (Aw,w) < (Ax,x) < 1.
Proof. We have (Ax,x) = 1+ %2((Ay,y) — 1). (Aw,w) =1+ B%((Ay,y) — 1). Since 5% < 2,
by Claim 1, we can prove (Aw,w) < (Ax,x) < 1. ]

By Claim 2 and Claim 3 we have
(A, %) — (Ax, %) = F((A%,x)) > min{f({Aw,w)), f(1) = 0} > 0.
Now the proof of theorem 14.5 is finished. |
Corollary 14.6 A graph G of average degree d has at least nd® walks of length k.

Proof. Take A as the adjacency matrix of G, and x = ﬁl. By theorem 1, (AFx,x) > (Ax,x)*.

Here, (Ax,x) = 2¢/n = d, and (A*x,x) = #{k — walks}/n, this implies #{k — walks} > nd".
This is tight for any d-regular graphs(easy to verify). 1

Theorem 14.7 Let G be a n-vertex graph with average degree d, where the smallest degree of
vertices is at least 2(5(G) > 2). Then G has at least nd(d—1)*~1 non-backtracking walks of length
k with equality iff G is a d-reqular graph.



Proof. In next lecture. 1

Here we introduce some definitions related to theorem 14.7.

Definition 14.8 Consider each edge uwv € E(G) as a pair of directed edges wb and vi. Let A be
a nd X nd matriz indexed by all directed edges.

1 ifu##zandv=uw,

0 otherwise.

(Ao = {

Definition 14.9 Let P be defined by

1/(d(v) —1) ifu+#z and v =w,

0 otherwise.

(Paswz = {

The matrix P is the transition matriz of a random walk. Let x = %1 € R™, then xP = x.

Definition 14.10 A non — backtracking random walk is defined as following: If at step t, the
walk is at the edge ub, then at step t + 1, we move to an edge 0%, where z is a random neighbor
of v(but not u).



