
Extremal and Probabilistic Graph Theory
Lecture 14

April 19th, Tuesday

Recall (Erdös−Gallai).

ex(n, {Ct+1, Ct+2, ...}) ≤
t(n− 1)

2
.

Definition 14.1 A walk of length k in a graph G is an alternating sequence (v0, e1, v1, ..., vk−1, ek, vk)
where vi ∈ V (G) and ei = {vi−1, vi} ∈ E(G).

Note. In this definition, a walk is an ordered sequence.

Definition 14.2 A walk is non-backtracking if ei 6= ei+1, 1 ≤ i ≤ k − 1.

Definition 14.3 Let A = (aij)n×n be the adjacency matrix of the graph G s.t

aij =

{
1 if ij ∈ E(G),

0 otherwise.

Fact. For u, v ∈ V (G) and the adjacency matrix A of G, (Ak)uv is the number of walks from u
to v of length k in G.
Proof. Exercise (Hint: matrix multiplication and induction).

Notation 14.4 For x,y ∈ Rn, 〈x,y〉 =
∑n

i=1 xiyi.

Theorem 14.5 Let A be a symmetric matrix and let x be a unit vector of Rn s.t all entries of
A and x are non-negative, then 〈Akx,x〉 ≥ 〈Ax,x〉k.

Proof. Since A is symmetric, there exists a matrix X s.t D = X−1AX = diag(λ1, ..., λn) where λi
is the eigenvalue of A and X consists of the eigenvectors X1, ..., Xn which form an orthonormal
basis of Rn. So AXi = λiXi. Let x =

∑n
i=1 aiXi, where

∑n
i=1 a

2
i = 1. Then 〈Ax,x〉 =∑n

i=1 λia
2
i . Since A = XDX−1, we have Ak = XDkX−1 and 〈Akx,x〉 =

∑n
i=1 λ

k
i a

2
i . By Jensen’s

inequality(f(x) = xk is convex),

〈Akx,x〉 =

n∑
i=1

λki a
2
i ≥ (

n∑
i=1

λia
2
i )

k = 〈Ax,x〉k.

Note. This proof only works when k is even as some λki may be negative when k is odd.
Case 1. x has an zero entry.

Without losing generality, say x1 = 0. Let y ∈ Rn−1 be obtained from x by deleting x1, and
let B ∈ R(n−1)×(n−1) be obtained from A by deleting the 1st row and 1st column. By induction
on n, 〈Bky,y〉 ≥ 〈By,y〉k. Note that 〈Ax,x〉 = 〈By,y〉, and 〈Akx,x〉 ≥ 〈Bky,y〉 (A exercise
from linear algebra). So

〈Akx,x〉 ≥ 〈Bky,y〉 ≥ 〈By,y〉k = 〈Ax,x〉k.

Case 2. All entries of x are positive.
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By re-normalization, we may assume that the largest eigenvalue of A is λ = 1, with a non-
negative unit eigenvector z ∈ Rn, i.e Az = z. (By Perron− Frobenius Theorem).

If x is an eigenvector of A with λ = 1, then it is clear that

〈Akx,x〉 = 〈x,x〉 = 1 = 〈Ax,x〉k.

So we may assume that x is not such a thing. Then there exist a unit vector y ∈ Rn which is
orthogonal to z s.t x = αz + βy, with α2 + β2 = 1, where α, β ≥ 0(x, z are non-negative).

Claim 1. 〈Ay,y〉 < 1.
Proof. Suppose that 〈Ay,y〉 = 1. Then 〈Ax,x〉 = α2〈Az, z〉 + β2〈Ay,y〉 = α2 + β2 = 1. But
〈Ax,x〉 =

∑n
i=1 λia

2
i ≤ max{λ1, ..., λn} = 1. This implies λ = 1, and x is an eigenvector of λ = 1.

This is a contradiction.

We can select a non-negative unit vector w ∈ Rn s.t w has a zero entry and w = α′z + β′y,
where 0 ≤ α′ ≤ α, 0 ≤ β′, α′2 + β′2 = 1. By Case 1, we have 〈Akw,w〉 ≥ 〈Aw,w〉k.

Let f : [0, 1]→ R by

f(t) = 1− tk +
〈Aky,y〉 − 1

〈Ay,y〉 − 1
(t− 1).

Then f ′′ ≤ 0, which means f is convex on [0, 1]. And f(1) = 0.

Claim 2. f(〈Ax,x〉) = 〈Akx,x〉 − 〈Ax,x〉k. Similarly, f(〈Aw,w〉) = 〈Akw,w〉 − 〈Aw,w〉k.
Proof. It is the same to verify

〈Aky,y〉 − 1

〈Ay,y〉 − 1
=
〈Akx,x〉 − 1

〈Ax,x〉 − 1
.

Hint:〈Ax,x〉 = α2〈Az, z〉 + β2〈Ay,y〉 = 1 + β2(〈Ay,y〉 − 1). Similarly, 〈Akx,x〉 = 1 +
β2(〈Aky,y〉 − 1).

Claim 3. 〈Aw,w〉 ≤ 〈Ax,x〉 ≤ 1.
Proof. We have 〈Ax,x〉 = 1 + β2(〈Ay,y〉 − 1). 〈Aw,w〉 = 1 + β2(〈Ay,y〉 − 1). Since β2 ≤ β′2,
by Claim 1, we can prove 〈Aw,w〉 ≤ 〈Ax,x〉 ≤ 1.

By Claim 2 and Claim 3 we have

〈Akx,x〉 − 〈Ax,x〉k = f(〈Ax,x〉) ≥ min{f(〈Aw,w〉), f(1) = 0} ≥ 0.

Now the proof of theorem 14.5 is finished.

Corollary 14.6 A graph G of average degree d has at least ndk walks of length k.

Proof. Take A as the adjacency matrix of G, and x = 1√
n
1. By theorem 1, 〈Akx,x〉 ≥ 〈Ax,x〉k.

Here, 〈Ax,x〉 = 2e/n = d, and 〈Akx,x〉 = #{k − walks}/n, this implies #{k − walks} ≥ ndk.
This is tight for any d-regular graphs(easy to verify).

Theorem 14.7 Let G be a n-vertex graph with average degree d, where the smallest degree of
vertices is at least 2(δ(G) ≥ 2). Then G has at least nd(d−1)k−1 non-backtracking walks of length
k with equality iff G is a d-regular graph.
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Proof. In next lecture.

Here we introduce some definitions related to theorem 14.7.

Definition 14.8 Consider each edge uv ∈ E(G) as a pair of directed edges −→uv and −→vu. Let A be
a nd× nd matrix indexed by all directed edges.

(A)−→uv,−→wz =

{
1 if u 6= z and v = w,

0 otherwise.

Definition 14.9 Let P be defined by

(P )−→uv,−→wz =

{
1/(d(v)− 1) if u 6= z and v = w,

0 otherwise.

The matrix P is the transition matrix of a random walk. Let x = 1
nd1 ∈ Rnd, then xP = x.

Definition 14.10 A non− backtracking random walk is defined as following: If at step t, the
walk is at the edge −→uv, then at step t+ 1, we move to an edge −→vz, where z is a random neighbor
of v(but not u).
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